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This paper deals with the investigation of the sensitivity of the eigenvalues of a special
mechanical system. It consists of a clamped–free Bernoulli–Euler beam carrying a tip mass.
The vibrations of the beam are damped by a viscous damper which is attached to it within
the span. The main concern lies in the determination of the sensitivities with respect to the
changes in the magnitude of the damping constant, tip mass ratio and location of the
damper attachment point, around their nominal values.
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1. INTRODUCTION

Dynamic analysis of mechanical systems often leads to the solution of an eigenvalue
problem. If the interest is in the optimization of the dynamic system one is confronted with
among others the problem of effective calculation of the partial derivatives of the
eigenvalues and eigenvectors with respect to some construction parameters. The
calculation of these partial derivatives is referred to as ‘‘sensitivity analysis’’. Sensitivity
analysis finds usage in various engineering applications. Some typical examples are: system
identification, robust control, gradient-based optimization algorithms and approximation
of the system response due to the change of a system parameter, etc. [1]. Due to the
increasing importance of sensitivity analysis in engineering practice this topic is also
referred to in new text books [2, 3]. In the studies [4, 5] the sensitivity of the
eigenfrequencies of elastic beams with respect to small changes in the location of the
in-span support is considered. In reference [6], the sensitivity of the eigenfrequencies of
beams and plates with reference to changes of position of attached masses, restraining
springs and spring–mass systems is discussed. In reference [7], the sensitivity of eigenvalues
of a viscously damped clamped–free Bernoulli–Euler beam was investigated. The present
study essentially considers the same mechanical system as in reference [7], but the system
here is more general than that because a tip mass is also included. In other words, the
sensitivity of eigenvalues of a clamped–free Bernoulli–Euler beam carrying a tip mass
which is damped by a viscous damper will be investigated. The sensitivities to be considered
are due to the changes in the magnitude of the damping constant, tip mass ratio and
location of the damper attachment point.
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2. THEORY

The system to be dealt with in the present study is shown in Figure 1. It consists of
essentially a cantilevered Bernoulli–Euler beam carrying a tip mass M. The beam is
damped at the position x=l by a viscous damper of damping constant c. Bending rigidity,
length and mass per unit length of the elastic beam are EI, L and m, respectively.

The partial differential equation of the free bending vibrations of a uniform beam,
according to Bernoulli–Euler theory is

EIwIV(x, t)+mẅ(x, t)+ cẇ(x, t)d(x− l)+Mẅ(x, t)d(x−L)=0, (1)

where d(x) denotes the well known Dirac delta function. As previously stated, c and M
are the viscous damping constant and the mass of the tip mass, respectively, and w(x, t)
represents the bending displacement of the beam at point x and time t. The primes and
overdots denote the partial derivatives with respect to x and t, respectively.

An approximate series solution of equation (1) can be taken in the form

w(x, t)1 s
n

r=1

wr (x)hr (t), (2)

where wr (x) are the orthogonal eigenfunctions of the clamped–free beam without the tip
mass and viscous damper, normalized with respect to the mass density. hr (t) are the
unknown time dependent generalized co-ordinates.

After substitution of equation (2) into equation (1), both sides of the equation are
multiplied by the sth eigenfunction ws (x) and integrated over the beam length L. By using
the orthogonality property of the eigenfunctions, the following set of ordinary differential
equations for the hs (t) is obtained

ḧs (t)+v2
s hs (t)+Mws (L) s

n

r=1

wr (L)ḧr (t)+ cws (l) s
n

r=1

wr (l)ḣr (t)=0, s=1, . . . , n,

(3)

where vs denotes the sth eigenfrequency of the undamped beam without the tip mass.
If the solutions of the form

hs (t)= h̄s elt, s=1, . . . , n (4)

Figure 1. Viscously damped bending beam carrying a tip mass.
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are substituted into the system (3) where l denotes an eigenvalue of the combined system
in Figure 1, the following set of equations are obtained for h̄s :

(l2 +v2
s )h̄s + s

n

r=1

[Ml2ws (L)wr (L)+ clws (l)wr (l)]h̄r =0, s=1, . . . , n. (5)

In order to use the advantages of matrix notation one can define

h̄=[h̄1, . . . , h̄n ]T,

w(x)= [w1(x), . . . , wn (x)]T,

V2 =diag (v2
i ). (6)

Using the definitions above, the system of equations in (5) can be written as

[(l2I+V2)+Ml2w(L)wT(L)+ clw(l)wT(l)]h̄= 0, (7)

with I being the n-dimensional unit matrix.
The solvability condition of equations (7) yields the following characteristic equation

for the mechanical system in Figure 1.

det [(l2I+V2)+Ml2w(L)wT(L)+ clw(l)wT(l)]=0. (8)

For further investigations, it is more suitable to rewrite the characteristic equation above
in terms of dimensionless quantities as

det [l*2(I+ bMa(1)aT(1))+ l*c̄a(l�)aT(l�)+B]=0, (9)

where the following abbreviations are introduced

x̄= x/L, l�= l/L, wk (x̄)=1/zmL ak (x̄),

ak (x̄)= cosh b�kx̄−cos b�kx̄− h̄k (sinh b�kx̄−sin b�kx̄), h̄k =
(cosh b�k +cos b�k )
(sinh b�k +sin b�k )

,

a(x̄)= [a1(x̄), . . . , an (x̄)]T, b�1 =1·875104, b�2 =4·694091, . . . (see reference [8])

v2
k = b�4

kv
2
0 , B=diag (b�4

k ), v2
0 =EI/mL4, l*= l/v0,

bM =M/mL, c̄= c/mLv0. (10)

As is known from the state–space description of mechanical systems, the non-dimensional
characteristic values l* can also be determined as the eigenvalues of the 2n-dimensional
square matrix A* defined as

......A*= & 0

−M−1B

I

−M−1D', (11)..... . . . .

where the following definitions are used

M= I+ bMa(1)aT(1), D= c̄a(l�)aT(l�). (12)
In order to derive the sensitivity formulas, it is necessary to express the determinant in

equation (9) in an analytical form. To this end one wants to use a determinantal formula
from matrix theory, namely

det (A+ addT)= (det A)(1+ adTA−1d), (13)



. ̈̈218

where a is a scalar, A is a regular n× n matrix and d is an n-dimensional column vector
[9]. In other words, the matrix the determinant of which is to be computed is the sum of
a regular square matrix and a dyadic product multiplied by a scalar. Various forms of the
formula (13) are often used in the control theory in the context of multivariable feedback
and pole location [10].

By using this formula it can be shown in a straightforward manner that the following
relation holds for the determinant of the sum of a regular square matrix A and two dyadic
products multiplied by the scalars a and b

det (A+ addT + bppT)=det A{1+ adTA−1d+ bpTA−1p

+ab(dTA−1dpTA−1p− pTA−1ddTA−1p)}. (14)

The comparison of the expressions (9) and (14) reveals that the following correspondences
hold

AXl*2I+B, dXa(1), pXa(l�), aXbMl*2, bXc̄l*. (15)

It is obvious that the matrix A here is diagonal. Hence, the characteristic equation (9) can
be reformulated as

1+ bMl*2 s
n

k=1

a2
k (1)

l*2 + b�4
k
+ c̄l* s

n

k=1

a2
k (l�)

l*2 + b�4
k
+ bMc̄l*3$0 s

n

k=1

a2
k (1)

l*2 + b�4
k10s

n

j=1

a2
j (l�)

l*2 + b�4
j 1

−0 s
n

k=1

ak (1)ak (l�)
l*2 + b�4

k 1
2

%=0. (16)

Before proceeding further, it is in order to consider the special case where the tip mass
does not exist, i.e., bM =0.

In this case, equation (16) reduces to the simple expression

1+ c̄l* s
n

k=1

a2
k (l�)

l*2 + b�4
k
=0, (17)

which leads to

1+ cl s
n

k=1

w2
k (l�)

l2 +v2
k
=0. (18)

This is just the characteristic equation given in reference [7].

3. DERIVATION OF SENSITIVITY FORMULAS

The main contribution of the present paper is to develop closed form expressions for
a particular class of viscously damped cantilever beams carrying a tip mass. Hence, the
aim is not calculating the roots of the non-linear characteristic equation (16) numerically,
but to provide the design engineer a set of general purpose formulae which would yield
the effect of various parameters on the eigencharacteristics of the system directly. Once
the related tedious manipulations are over then it is a simple matter to perform the
calculations for a non-expert.

Having obtained the characteristic equation in an analytical form, one is now in a
position to derive various sensitivity expressions of the eigenvalues of the system in
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Figure 1. Let us begin with the sensitivity of the eigenvalues with respect to the viscous
damping constant c.

It is easy to show that

1l

1c
=

1
mL

l*', (19)

where a prime denotes partial derivative with respect to the dimensionless damping
constant c̄. Differentiating the expression (16) partially with respect to c̄ results in

l*'= p1/p, (20)

where the following abbreviations are used

p1 =
1
c̄ $1+ bMl*2 s

n

k=1

a2
k(1)

l*2 + b�4
k%, (21)

p= c̄ s
n

k=1

a2
k (l�)

l*2 + b�4
k
+2l*bM s

n

k=1

a2
k (1)

l*2 + b�4
k
+ l*2$3bMc̄g−2c̄ s

n

k=1

a2
k (l�)

(l*2 + b�4
k )2%

−2bMl*3 s
n

k=1

a2
k (1)

(l*2 + b�4
k )2 −2bMc̄l*4$0 s

n

k=1

a2
k (1)

(l*2 + b�4
k )210s

n

j=1

a2
j (l�)

l*2 + b�4
j1

+0 a
n

k=1

a2
k (1)

l*2 + b�4
k10s

n

j=1

a2
j (l�)

(l*2 + b�4
j )21−20 s

n

k=1

ak (1)ak (l�)
l*2 + b�4

k 10 s
n

k=1

ak (1)ak (l�)
(l*2 + b�4

k )21%, (22)

where g denotes the bracket in equation (16).
Hence, it is now possible to give an approximate formula for the modified value of an

eigenvalue l(c) if the damping constant of the damper is changed by a small amount Dc
around its nominal value c:

l(c+Dc)1 l(c)+01l

1c1Dc= l(c)+
l*'
mL

Dc. (23)

Before going further to the derivation of other sensitivities, it is in order to consider again
the special case bM =0, i.e., where the tip mass is not present. In this case, the partial
derivative in equation (20) reduces to

l*'=
1

c̄2$ s
n

k=1

a2
k (l�)

l*2 + b�4
k
−2l*2 s

n

k=1

a2
k (l�)

(l*2 + b�4
k )2%

. (24)

On the other hand, from equation (17)

c̄ s
n

k=1

a2
k (l�)

l*2 + b�4
k
=−

1
l*

(25)
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is obtained. The substitution of this expression into equation (24) yields

l*'=−
l*
c̄

1

1+2l*3c̄ s
n

k=1

a2
k (l�)

(l*2 + b�4
k )2

, (26)

which when put into equation (19) results in

1l

1c
=−

l

c
1

1+2l3c s
n

k=1

w2
k (l�)

(l2 +v2
k )2

. (27)

This is just the sensitivity formula given in reference [7].
From a practical point of view, it can also be interesting to have the sensitivity of the

eigenvalues of the system with respect to the tip mass ratio. It can be written as

1l

1bM
=v0

1l*
1bM

. (28)

After differentiating equation (16) partially with respect to bM

1l*
1bM

=
p2

p
(29)

is obtained where p was introduced in equation (22) and p2 is defined as

p2 =−l*2 s
n

k=1

a2
k (1)

l*2 + b�4
k
− c̄l*3g, (30)

where g denotes the interior of the bracket in equation (16). It is now possible to give
an approximate expression for the modified value of an eigenvalue l(bM ), if the tip mass
ratio is changed due to some reason by a small amount DbM around its nominal value bM :

l(bM +DbM )1 l(bM )+0 1l

1bM1DbM . (31)

Finally, an expression can also be derived for the sensitivity of the eigenvalues with respect
to the position of the damper attachment point to the beam.

In order to determine 1l*/1l� in

1l

1l�=v0
1l*
1l� , (32)

one has to differentiate equation (16) partially with respect to l� which results in

1l*
1l� =

p3

p
, (33)
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where p3 is defined by

p3 =−cl�*6 s
n

k=1

ak (l�)a'k (l�)
l*2 + b�4

k
+ bMl*2$0 s

n

k=1

a2
k (1)

l*2 + b�4
k10s

n

j=1

aj (l�)a'j (l�)
l*2 + b�4

j 1
−0 s

n

k=1

ak (1)ak (l�)
l*2 + b�4

k 10 s
n

k=1

ak (1)a'k (l�)
l*2 + b�4

k 1%7, (34)

with a'k (l�) being introduced as

a'k (l�)= b�k [sinh b�kl�+sin b�kl�− h̄k (cosh b�kl�−cos b�kl�)], (35)

i.e., the derivative of ak (l�) with respect to l�and p has to be taken again from equation (22).
Hence, an approximate expression for the modified value of an eigenvalue l(l�) if the
position of the damper attachment point to the beam is changed by a small amount of
Dl� around its nominal value l� is

l(l�+Dl�)1 l(l�)+01l

1l�1Dl�. (36)

4. NUMERICAL APPLICATIONS

This section is devoted to the numerical evaluation of the sensitivity expressions derived
in the preceding section. To this end the following numerical values are chosen for the
physical data of the mechanical system in Figure 1: E=7×1010 N/m2, l=(0·05 ( 0·0053)/
12 m4, L=1 m, mL=0·675 kg, l�= l/L=0·2, c=5 N/(m/s), bM =3. The number of the
modes n in expansion (2) is chosen as 10.

Table 1 gives an indication on the accuracy of the sensitivity related equation (23) in
connection with equations (20)–(22). Small changes of the damping constant c around its
nominal value c=5 N/(m/s) are taken as Dc=0·5, 1, 1·5 and 2, respectively. The complex
numbers in the first columns are characteristic values l which are obtained as the
eigenvalues of the 2n×2n matrix A* defined in equation (11) and multiplied by vo . The
complex numbers in the second columns are approximate eigenvalues which are computed
via the sensitivity-based formula (23) in connection with equations (20)–(22). An inspection
of both columns indicates clearly that the accuracy of the formula is excellent even for
larger changes of the damping constant.

Similarly, Table 2 gives an indication on the accuracy of the sensitivity-based formula
(31) in connection with equations (22) and (28)–(30). Small changes of the tip mass ratio
bM around its nominal value bM =3 are chosen as DbM =0·001, 0·01, 0·1 and 0·5,
respectively. As in the preceding case, the first columns contain those complex numbers
which are obtained as the eigenvalues of the matrix A* in equation (11) multiplied by vo .
The complex numbers in the second columns are approximate eigenvalues computed via
the sensitivity-based formula (31). The comparison of the complex numbers in both
columns reveals clearly that equation (31) gives very accurate approximations to the
eigenvalues of the modified system without having to compute the eigenvalues of the
matrix A* for the parameters of the modified system.

Finally, Table 3 serves to test the accuracy of the sensitivity-based formula (36) in
connection with equations (22) and (32)–(35). Small changes in the location of the damper
attachment point are taken as Dl�=0·0005 and 0·001. In the first columns, the eigenvalues
of the matrix A* in equations (11) multiplied by vo are collected. The complex numbers
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T 1

Modified eigenvalues due to the change of the damping constant c by
Dc

From equation (11) From equation (23)

(a) Dc=0·5
−0·00402722 7·0761439i −0·00402722 7·0761438i
−0·86456062 115·55949i −0·86455992 115·55941i
−4·74011732 369·87972i −4·74006982 369·87942i
−8·86956392 769·52033i −8·86945272 769·52112i
−8·17264202 1315·4709i −8·17270812 1315·4728i
−2·97175542 2008·9140i −2·97180202 2008·9147i
−0·00079402 2850·8149i −0·00079402 2850·8149i
−3·05960722 3843·1176i −3·05960822 3843·1117i
−7·18575272 4989·6100i −7·18575472 4989·6106i
−8·22543172 6300·5273i −8·22547542 6300·5285i

(b) Dc=1
−0·00439332 7·0761450i −0·00439332 7·0761448i
−0·94316292 115·56113i −0·94316022 115·56085i
−5·17146012 369·88665i −5·17126382 369·88543i
−9·67687792 769·50243i −9·67641862 769·50556i
−8·91502132 1315·4284i −8·91529442 1315·4359i
−3·2415032 2008·8984i −3·24169262 2008·9012i

−0·00086622 2850·8149i −0·00086612 2850·8149i
−3·33774412 3843·1134i −3·33774842 3843·1141i
−7·83898542 4989·5977i −7·83899352 4989·5998i
−8·97280892 6300·5012i −8·97298952 6300·5057i

(c) Dc=1·5
−0·00475942 7·0761462i −0·00475942 7·0761457i
−1·02176682 115·56293i −1·02176042 115·56228i

5·60291332 369·89418i 5·60245782 369·89145i
−10·4844502 769·48296i −10·4833842 769·49001i
−9·65724672 1315·3822i −9·65788082 1315·3989i
−3·51113722 2008·8815i −3·51158332 2008·8876i
−0·00093832 2850·8149i −0·00093832 2850·8149i
−3·61587862 3843·1089i −3·61588852 3843·1105i
−8·49221362 4989·5843i −8·49223242 4989·5891i
−9·72008462 6300·4728i −9·72050352 6300·4830i

(d) Dc=2
−0·00512552 7·0761475i −0·00512552 7·0761467i
−1·10037242 115·56487i −1·10036072 115·56372i
−6·03448622 369·90231i −6·03365182 369·89746i
−11·2923032 769·46192i −11·2903502 769·47445i
−10·3993052 1315·3323i −10·4004672 1315·3619i
−3·78065702 2008·8632i −3·78147392 2008·8740i
−0·00101042 2850·8149i −0·00101042 2850·8149i
−3·89401042 3843·1041i −3·89402862 3843·10691i
−9·14543672 4989·5698i −9·14547132 4989·5784i
−10·4672502 6300·4421i −10·4680182 6300·4602i

in the second columns are approximate eigenvalues obtained from the sensitivity-based
formula (36). An inspection of both columns indicates clearly that the above formula yields
good approximations to the eigenvalues of the modified system which is obtained when
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T 2

Modified eigenvalues due to the change of the tip mass ratio bM by
DbM

From equation (11) From equation (31)

(a) DbM =0·001
−0·00365992 7·0750501i −0·0365992 7·0750498i
−0·78595422 115·55727i −0·78595432 115·55727i
−4·30886942 369·87263i −4·30886942 369·87262i
−8·06248752 769·53589i −8·06248752 769·53589i
−7·43012852 1315·5090i −7·43012852 1315·5090i
−2·70191642 2008·9275i −2·70191652 2008·9275i
−0·00072202 2850·8142i −0·00072202 2850·8142i
−2·78146582 3843·1207i −2·78146582 3843·1206i
−6·53251482 4989·6207i −6·53251482 4989·6207i
−7·47796492 6300·5507i −7·47796492 6300·5507i

(b) DbM =0·01
−0·00364962 7·0652372i −0·00364952 7·06521191i
−0·78590602 115·55094i −0·78590582 115·55092i
−4·30881162 369·86568i −4·30881142 369·86565i
−8·06249322 769·52891i −8·06249332 769·52888i
−7·43018842 1315·5021i −7·43018872 1315·5021i
−2·70196272 2008·9208i −2·70196292 2008·9208i
−0·00072262 2850·8077i −0·00072262 2850·8077i
−2·78144522 3843·1146i −2·78144502 3843·1145i
−6·53250572 4989·6153i −6·53250572 4989·6153i
−7·47799592 6300·5464i −7·47799602 6300·5463i

(c) DbM =0·1
−0·00354932 6·9693016i −0·003545732 6·9668327i
−0·78543882 115·48953i −0·78542182 115·48735i

4·30825202 369·79831i 4·30823142 369·7958i
−8·06254912 769·46124i −8·06255102 769·45877i
−7·43076912 1315·4350i −7·43079032 1315·4325i
−2·70241052 2008·8552i −2·70242692 2008·8528i
−0·00072942 2850·7448i −0·00072962 2850·7425i
−2·78124502 3843·0558i −2·78123752 3843·0536i
−6·53241782 4989·5627i −6·53241452 4989·5608i
−7·47829602 6300·5042i −7·47830702 6300·5026i

(d) DbM =0·5
−0·00316292 6·5857209i −0·00308452 6·5295917i
−0·78364722 115·25339i −0·7832702 115·20484i
−4·30610972 369·53990i −4·30565372 369·48570i
−8·06276552 769·20199i −8·06280742 769·14716i
−7·43299382 1315·1780i −7·43346442 1315·1234i
−2·70412512 2008·6043i −2·70448932 2008·5508i
−0·00075552 2850·5042i −0·00076062 2850·4529i
−2·78047902 3842·8310i −2·78031532 3842·7829i
−6·53208142 4989·3618i −6·53200932 4989·3188i
−7·47944392 6300·3428i −7·47968962 6300·3082i

the attachment point of the damper is changed slightly about its nominal position given
by l�.

Considering the differences in the order of magnitudes of the modifications of the
corresponding parameters in the three tables, it can be stated that the eigenvalues of the
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T 3

Modified eigenvalues due to the change of the damper attachment
point l� by Dl�

From equation (11) From equation (36)

(a) Dl�=0·0005
−0·00369642 7·0761430i −0·00366812 7·0761429i
−0·79244682 115·55805i −0·78725382 115·55799i
−4·33425822 369·87328i −4·31395092 369·87337i
−8·07946702 769·53503i −8·06591572 769·53634i
−7·39309992 1315·5097i −7·42276892 1315·5098i
−2·64059262 2008·9300i −2·68961002 2008·9286i
−6·5×10−7 2 2850·8149i −0·0004242 2850·8149i
−2·86341622 3843·1209i −2·79781522 3843·1212i
−6·59072372 4989·6200i −6·54435232 4989·6210i
−7·38243652 6300·5522i −7·45912022 6300·5514i

(b) Dl�=0·001
−0·00373212 7·0761431i −0·00367522 7·07614291i
−0·79896652 115·55813i −0·78854802 115·55801i
−4·35965362 369·87314i −4·31902602 369·87335i
−8·09611822 769·53338i −8·06934452 769·53601i
−7·35556742 1315·5097i −7·41541592 1315·5098i
−2·57965962 2008·9317i −2·67730872 2008·9290i
−0·00081102 2850·8149i −0·00012702 2850·8149i
−2·94575972 3843·1205i −2·81416242 3843·1211i
−6·64695652 4989·6187i −6·55618882 4989·6208i
−7·28432942 6300·5532i −7·44027912 6300·5516i

system are much more sensitive with respect to the changes of the position of the damper
than to changes of the damping constant and the tip mass ratio.

5. CONCLUSIONS

The present study deals with the investigation of the sensitivity of the eigenvalues of a
special mechanical system consisting of a viscously damped, clamped–free Bernoulli–Euler
beam carrying a tip mass. Sensitivity formulas with respect to changes in the magnitude
of the damping constant, tip mass ratio and location of the damper attachment point are
established. Numerical results collected in the form of various tables indicate clearly that
the eigenvalues can be determined very accurately by means of sensitivity formulas
obtained if the construction parameters above are changed slightly around their nominal
values.
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